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Abstract - Many problems are easily expressed as an 
attempt to fulfill some goal while laboring under some set of 
constraints.  Prior planning algorithms have addressed this in 
part, but there are few fast ways of working with more than 
just a few constraints.  Extending algorithms designed for one 
constraint to multiple constraints is difficult due to the NP-
complete nature of the problem, prompting a switch to an 
approximation algorithm.  This paper presents K2, a multiply-
constrained planning algorithm which is an amalgamation of 
parts of H_MCOP and Focussed D*.  It accepts additive 
constraints over the path or over any fixed-length section of the 
path.  K2 operates quickly and produces results of acceptable 
quality. 

 
Index Terms - Multiply-constrained path selection, 

replanning, approximation algorithm 
 

INTRODUCTION 

Planning is the act of taking a state space, a set of 
actions that define transitions within this state space, and a 
pair of states labeled the start and the goal, then finding a 
sequence of actions that lead from the start to the goal.  For 
most problems, one is interested not only in finding a 
solution, but also in finding a good solution relative to some 
set of criteria.  This is traditionally handled by attaching a 
cost to each action and then specifying that sequences of 
actions with minimal total cost are preferred. 

Aside from the issue of finding a minimal-cost 
path, assigning costs to actions can be difficult.  For many 
real-world tasks, preferences regarding solutions are most 
naturally expressed in terms of multiple criteria, which often 
compete with each other.  Even after one has assigned 
numerical costs to each of these criteria, it is unclear how to 
proceed.  Most existing planning algorithms operate on a 
single cost per action, so the multiple criteria need to be 
combined into a single cost function, such as by assigning 
arbitrary weights and summing them. 

This sort of approach implies that one criterion can 
be traded off for another, which is usually not the case.  
Instead, each criterion often models a distinct limited 
resource, such as time elapsed and fuel spent, and one is 
only interested in plans that simultaneously meet certain 
cost constraints for each resource.  Thus, if one wishes to 
sum the various cost functions, the weights need to be 
arrived at intelligently in a problem-dependent fashion. 

Path planning is the archetypical example of such a 
multiply-constrained problem.  One might have a robot that 
needs to get from point A to point B without exceeding its 
battery charge, overheating, taking too long, or exposing 
itself to excessive risks along the way.  If each of these 
factors can be formulated as a cost map, then they can be 
used as inputs for the planning process. 

PRIOR WORK 

Several algorithms exist to address this category of 
problems.  A* with bounded costs (ABC) relies upon 
prioritizing the constraints [1].  For each point in the state 
space, it keeps track of all non-dominated paths that reach it, 
and selects from among those.  Although optimal and 
complete, it can require substantial overhead due to keeping 
track of and comparing several paths per point in the state 
space.  This is unsurprising, since the underlying problem is 
NP-complete [2]. 

CD* is a computationally efficient planner and re-
planner that extends D* (a re-planning version of A*) to 
handle one hard constraint which must not be violated in 
addition to the primary objective function which needs to be 
minimized [3].  CD* assigns weights to the objective 
function and the constraint function, then sums them and 
uses this combined cost function as the input to D*.  Based 
on whether or not the constraint is met by the solution 
returned, the weights are adjusted up or down and D* is run 
again, converging via binary search to the optimal solution 
within this weight space. 

The obvious approach is to extend CD* to handle 
multiple simultaneous constraints.  Multiply-Constrained D* 
(MCD*) is a planning and re-planning algorithm that takes 
into account a single cost function to be minimized and 
multiple constraint functions to be kept below individual 
thresholds.  The constraint functions are assigned weights 
and summed with the primary objective function to produce 
a combined cost function that is used for the actual planning 
via D*.  Ideally, the resulting solution could then be 
assessed against the constraints and the weights adjusted in 
a multi-dimensional search that repeatedly creates new 
combined cost functions which converge upon a solution 
that meets all the constraints while minimizing the primary 
cost function. 

Unfortunately, guiding the search in such a manner 
is problematic.  The focusing of the search is predicated on 
the fact that the optimal solution (if it exists) will lie on the 
boundary between a region of weight-space whose points 
yield solutions that meet all the constraints (the feasible 
region) and a region whose points do not.  However, for 
more than one constraint, the feasible region need not be 
contiguous within the weight-space (See Figure 1).  This 
leaves no efficient means of discovering the boundaries of 
the feasible region.  MCD* thus reduces to placing an n-
dimensional grid over the weight space, sampling each of 
the intersections, and returning the best solution of those 
tested.  While this is resolution-optimal within the weight-
space, it requires running D* a number of times exponential 
in the number of constraints. 



Fig. 1. Proof that the feasible region need not be contiguous. 
Consider a planning problem with A, B, C, and D as the only 

four possible paths, with the total values of the paths relative to three cost 
functions being: 

 
 f0 f1 f2 
A 0 9 9 
B 1 0 12 
C 10 1 1 
D 1 12 0 
 

 B minimizes f0+f1.  D minimizes f0+f2.  Any linear combination 
of (f0+f1) and (f0+f2) is minimized by one of B or D.  If our constraints are 
that neither f1 nor f2 may exceed 10, then we have a solid line bisecting the 
weight space all of whose optimal solutions do not meet all constraints.  A 
minimizes f0, which lies on one side of the line, and C minimizes 
f0+2f1+2f2, which lies on the other side of the line.  Both A and C meet all 
constraints.  Thus, the feasible space is not contiguous.  The cost metrics f0, 
f1, and f2 could all be simple additive functions. 

Unlike simply minimizing the cost of a path, 
finding a path subject to multiple constraints is not a 
dynamic programming problem.  In dynamic programming, 
the optimal solution to a problem is dependent only on the 
current position in the state space, allowing for the recursive 
construction of solutions.  However, in multiply constrained 
planning, although the minimum cost path (relative to an 
arbitrary metric) from any given point to the goal is not 
dependent on the path taken to reach that point, the 
admissibility relative to a given set of constraints of a 
complete path from the start to the goal passing through that 
point can be dependent on the path taken to reach that point.  
(This is why ABC must keep track of all non-dominated 
partial paths.)  Expressed mathematically, if we have n cost 
criteria each with a corresponding function fi which gives 
the cost of a path p with respect to one of the criteria, and 
for each criterion we have a constraint ci, such that we do 
not wish fi(p) to exceed ci, then attempting to find a path 
which minimizes the cost function maxi(fi(p)/ci) will yield a 
path which meets all constraints (if such a path exists).  This 
is not a dynamic programming function, however. 

Given the computational complexity of the 
problem, several approximation algorithms exist.  H_MCOP 
is a two-pass approximation algorithm whose computational 
workload grows only linearly as the number of constraint 
functions increases [4].  In the first pass, it works backwards 
from the goal, finding the optimal path according to a cost 
function which is the average of the individual fi(p)/ci 
values.  It then uses the costs to reach the goal according to 
this function as a heuristic to guide a forward search from 
the start using the actual maxi(fi(p)/ci) cost function.  Since 
this heuristic is not guaranteed to be admissible, the 
resulting algorithm is neither complete nor optimal, but, in 
practice, it performs well and yields solutions of acceptable 
quality. 

THE K2 ALGORITHM 

Our algorithm, K2, is derived from H_MCOP, and 
its basic operation is nearly identical.  The problem space is 
defined in terms of a state space V and a set of transitions E 
from one state to another.  Associated with each transition in 
E is an n-dimensional vector of non-negative real numbers 
which give the costs of taking that transition relative to n 
different metrics.  For any path p composed of a sequence of 
transitions in E, fi(p) gives the sum of the costs of each 
transition in p with respect to the ith cost metric.  The vector 

w is composed of n real numbers such that f(p) = ∑i(fi(p)•wi) 
defines an objective cost function that should be minimized. 

For a specific instance of a problem, we have two 
elements of V given as the START and the GOAL.  In 
addition, we are given a vector c of n real numbers such that 
element ci states the maximum cost acceptable with respect 
to the ith metric over the total path.  The desired output is a 
path p from START to GOAL such that ∀i(fi(p) ≤ ci) and 
which minimizes f(p) over all such paths. 

For much of the algorithm, the cost functions are 
normalized to fi(p)/ci so that a normalized path cost of 1.0 or 
less corresponds to meeting the constraint.  This allows us to 
compare in a meaningful fashion how well the various 
constraints are being met. 

Conceptually, the algorithm works backwards from 
GOAL using the sum of the normalized cost functions as an 
objective function for A*.  For each point in V, it uses the 
path determined by this process to calculate the cost to the 
GOAL along that path using the maximum of the 
normalized cost functions as an objective function.  It then 
uses these costs as a heuristic for a forward search from 
START with additional logic to select between favoring 
minimizing the maximum of the normalized cost functions 
and minimizing the overall objective function f. 

In H_MCOP, the first pass exhaustively computes 
the heuristic values for every point in the state space, and 
the second pass computes the path from the START to the 
GOAL.  In K2, we have switched to a time-saving lazy 
implementation that computes the heuristic on demand only 
for points that are examined by the second pass.  Once the 
heuristic for a point has been computed, even in the process 
of computing the heuristic for another point, it is saved and 
never recomputed. 

The first half of the algorithm, the backwards pass 
(initialized by lines 1-7 and processed by lines 52-66), is 
simply Dijkstra's algorithm with ∑fi(p) as the cost function.  
It works outwards, finding for every vertex a path to the 
GOAL that minimizes the total normalized cost across all 
cost functions fi and recording the total cost in each function 
fi separately for each node, for use in the second half of the 
algorithm.  If the constraints are all being met to a similar 
degree, as evidenced by the normalized costs with respect to 
each of the constraint functions being similar, then the paths 
generated will likely be feasible (meet all constraints), if 
such paths exist.  If, instead, a path requires substantial 
increases in several cost functions in order to accommodate 
an otherwise troublesome constraint, then the paths 
generated at this point will likely not resemble the end result 
of stage two of the algorithm. 

For the second, forward pass (lines 8-51), the 
algorithm runs modified A* with unusual selection logic.  
Vertices on the OPEN list are all kept in two queues 
simultaneously, one sorted by the total f(p) objective cost of 
the traversed path plus the heuristic path from the first half 
of the algorithm, and the other sorted by the maxi(fi(p)/ci) 
cost of the path, thus preferring paths that are deemed to be 
furthest from violating the constraint with respect to which 
they are doing worse.  (In H_MCOP, this second list is 
sorted by the sum of powers of the normalized constraint 
functions; if the exponent is infinite, this is equivalent to 
taking the maximum of the functions, which usually yields 
the best result.) 



# Initialize the Backward Search by placing the GOAL on the heuristic OPEN list 
   
1  for each u in V 
2   u.BackwardState := NEW 
   
3  GOAL.BackwardState := OPEN 
4  for p := 1 to n 
5   GOAL.CostToGoal[p] := 0 
6  GOAL.CombinedCostToGoal := 0 
   
7  Enqueue(BackwardsQueue point:GOAL withCombinedCostToGoal:0 withCostToGoal:GOAL.CostToGoal  
                       withSuccessor:NULL) 
   
# Initialize the Forward Search by placing the START on the new, doubly-sorted OPEN list 
   
8  for each u in V 
9   u.ForwardState := NEW 
    
10  for p := 1 to n 
11*  START.CostToReach[p] := 0 
12 ComputeHeuristicForState(START) 
13  objCost := 0 
14  maxCost := 0 
15  for p := 1 to n 
16*  objCost += w[p] * START.CostToGoal[p] 
17*  maxCost := MAX(maxCost, START.CostToGoal[p]) 
18  Enqueue(ObjectiveCostQueue point:START withEstimatedTotalCost:objCost 
             withCostToReach:START.CostToReach withPredecessor:NULL) 
19  Enqueue(MaxCostQueue       point:START withEstimatedTotalCost:maxCost                   
             withCostToReach:START.CostToReach withPredecessor:NULL) 
20  START.ForwardState := OPEN 
   
# Do the Forward Search by repeatedly expanding the minimum objective cost path if it is predicted  
# to be feasible, and the minimum maximum normalized constraint cost path otherwise 
   
21  while QueueIsNotEmpty(ObjectiveCostQueue) & QueueIsNotEmpty(MaxCostQueue) & GOAL.ForwardState != CLOSED 
22   if PeekMinFromQueue(ObjectiveCostQueue).ForwardState == CLOSED 
23    PopMinFromQueue(ObjectiveCostQueue) 
24   else if PeekMinFromQueue(MaxCostQueue).ForwardState == CLOSED 
25    PopMinFromQueue(MaxCostQueue) 
26   else 
27    (u, _, uCostToReach, uPredecessor) := PeekMinFromQueue(ObjectiveCostQueue) 
28   minObjFeasible := true 
29    for p := 1 to n 
30*    if uCostToReach[p] + u.CostToGoal[p] > 1.0 
31*     minObjFeasible := false 
32    if minObjFeasible 
33     (u, _, uCostToReach, uPredecessor) := PopMinFromQueue(ObjectiveCostQueue) 
34    else 
35     (u, _, uCostToReach, uPredecessor) := PopMinFromQueue(MaxCostQueue) 
36    u.ForwardState := CLOSED 
37    u.BackPointer := uPredecessor 
38    u.CostToReach := uCostToReach 
39    for each v in V such that <u, v> is in E 
40     if v.ForwardState != CLOSED 
41     ComputeHeuristicForState(v) 
42      objCost := 0 
43      maxCost := 0 
44      for p := 1 to n 
45*      vCostToReach[p] := u.CostToReach[p] + <u, v>.Cost[p] / Constraint[p] 
46*      pathTotalForPlane := vCostToReach[p] + v.CostToGoal[p] 
47*      objCost += w[p] * pathTotalForPlane 
48*      maxCost := MAX(maxCost, pathTotalForPlane) 
49      Enqueue(ObjectiveCostQueue point:v withEstimatedTotalCost:objCost  
                withCostToReach:vCostToReach withPredecessor:u) 
50      Enqueue(MaxCostQueue       point:v withEstimatedTotalCost:maxCost 
                withCostToReach:vCostToReach withPredecessor:u) 
51      v.ForwardState := OPEN 
   
subroutine: ComputeHeuristicForState(r) 
   
# Do the Backward Search using Dijkstra's algorithm on the sum of the normalized cost functions 
   
52  while r.BackwardState != CLOSED 
53   (s, sCombinedCostToGoal, sCostToGoal, sSuccessor) := PopMinFromQueue(BackwardsQueue) 
    
54   if s.BackwardState != CLOSED 
55    s.BackwardState := CLOSED 
56    s.ForwardPointer := sSuccessor 
57    s.CombinedCostToGoal := sCombinedCostToGoal 
58    s.CostToGoal := sCostToGoal 
     
59    for each t in V such that <t, s> is in E 
60     if t.BackwardState != CLOSED 
61      tCombinedCostToGoal := 0 
62      for plane := 1 to n 
63*      tCostToGoal[plane] := s.CostToGoal[plane] + <t, s>.Costs[plane] / Constraint[plane] 
64*      tCombinedCostToGoal += tCostToGoal[plane] 
65      Enqueue(BackwardsQueue point:t withCombinedCostToGoal:tCombinedCostToGoal 
                 withCostToGoal:tCostToGoal withSuccessor:s) 
66      t.BackwardState := OPEN 

  

Fig. 2. The workings of the K2 algorithm for simple additive cost metrics.  (Starred lines indicate where changes are needed to support windowed constraints.) 
 



If the vertex at the head of the objective cost queue 
appears to lie on a feasible path (lines 39-43), then it is 
expanded (line 45); if not, then the vertex at the head of the 
max cost queue is expanded (line 47). Intuitively, if we seem 
to be meeting the requirements, we can focus on keeping 
down the objective cost, while if we are in danger of violating 
the requirements, we should focus on the one closest to the 
limit or most over it. This selection process is not an 
admissible heuristic, and it is here that non-optimality and 
incompleteness enter the algorithm. The rationale for this 
algorithm is explained in detail by Korkmaz and Krunz [4]. 

We then extended this algorithm by adding a new, 
more complicated form of cost function.  The original 
functions are additive costs over the entire path.  For many 
applications, some of the constraints are best formulated as a 
restriction that should apply to any given segment of the 
path.  For example, to avoid overheating, one might need to 
limit one's exposure to direct sunlight over any given period 
of time, or an agent may need to communicate with another 
party periodically, limiting how long it should be out of 
radio contact with a base.  These sorts of constraints can be 
expressed as an additive cost function whose value over any 

given window should not 
exceed some constant.  The 
obvious way to express this 
window is over a number of 
state transitions, but for most 
such constraints, they are 
more naturally expressed in 
terms of elapsed time.  If 
one of the costs associated 
with each action is the time 
it requires to accomplish, 
then the windowed 
constraints can be expressed 
in terms of that time 
expenditure. 

The primary problem 
with such windowed constraint 
functions is the question of 
how to guide the search.  For 
simple additive functions, 
the total cost to reach a 
given point increases 
monotonically as one moves 
down the path.  However, 
the total cost over the 
window ending at any given 
point along the path can vary 
up or down. To turn this into 
a monotonically increasing 
function, we can treat the 
maximum sum over any 
window up to this point as 
the cost upon which to base 
the search. While this works, 
it is not particularly well-
informed.  Specifically, 
unless the next possible step 
along a path would result in 
the sum over the current 
window exceeding the 
previous maximum, there is 
no feedback regarding 
embarking upon a high-cost 
section of a path.  
Furthermore, after the 
highest-cost window the 
path will ever encounter has 
been traversed, this function 
will provide no additional 
feedback for the rest of the 
path. 

Replace Line 11 with: 
Case: p is a windowed constraint function 
 START.CostToReach[p] := (0, 0) 
Case: p is a simple additive constraint function 
 START.CostToReach[p] := 0 
 
Replace Lines 16-17 with: 
Case: p is a windowed constraint function 
 (m, c) := START.CostToGoal[p] 
 objCost += w[p] * m 
 maxCost := MAX(maxCost, m) 
Case: p is a simple additive constraint function 
 objCost += w[p] * START.CostToGoal[p] 
 maxCost := MAX(maxCost, START.CostToGoal[p]) 
 
Replace Lines 30-31 with: 
Case: p is a windowed constraint function 
 (uBackwardsMax, _) = uCostToReach[p] 
 (uForwardsMax, _) = u.CostToGoal[p] 
 if uBackwardsMax > 1.0 | uForwardsMax > 1.0 
  minObjFeasible := false 
Case: p is a simple additive constraint function 
 if uCostToReach[p] + u.CostToGoal[p] > 1.0 
  minObjFeasible := false 
 
Replace Lines 45-48 with: 
Case: p is a windowed constraint function 
 window := <u, v>.Costs[windowLengthDefinedInTermsOf[plane]] 
 windowCost := <u, v>.Costs[p] / Constraint[p] 
 x := u 
 while window < windowSize[p] & x != START 
  windowCost += <x.BackPointer, x>.Cost[p] / Constraint[p] 
  window += <x.BackPointer, x>.Cost[windowLengthDefinedInTermsOf[p]] 
  x := x.BackPointer 
 (maxWindow, uWindowCost) := u.CostToReach[p] 
 maxWindow := MAX(maxWindow, windowCost) 
 vCostToReach[p] := (maxWindow, windowCost) 
 (vForwardEstimateMax, _) := v.CostToGoal[p] 
 maxWindow := MAX(maxWindow, vForwardEstimateMax) 
 vCombinedCost = (maxWindow * d + windowCost) / (d+1) 
 objCost += w[p] * vCombinedCost 
 maxCost := MAX(maxCost, vCombinedCost) 
Case: p is a simple additive constraint function 
 vCostToReach[p] := u.CostToReach[p] + <u, v>.Cost[p] / Constraint[p] 
 pathTotalForPlane := vCostToReach[p] + v.CostToGoal[p] 
 objCost += w[p] * pathTotalForPlane 
 maxCost := MAX(maxCost, pathTotalForPlane) 
 
Replace Lines 63-64 with: 
Case: plane is a windowed constraint function 
 window := <t, s>.Costs[windowLengthDefinedInTermsOf[plane]] 
 windowCost := <t, s>.Costs[plane] / Constraint[plane] 
 x := s 
 while window < windowSize[plane] & x != GOAL 
  windowCost += <x, x.ForwardPointer>.Cost[plane] / Constraint[plane] 
  window += <x, x.ForwardPointer>.Cost[windowLengthDefinedInTermsOf[plane]] 
  x := x.ForwardPointer 
 (maxWindow, sWindowCost) := s.CostToGoal[plane] 
 maxWindow := MAX(maxWindow, windowCost) 
 tCostToGoal[plane] := (maxWindow, windowCost) 
 tCombinedCostToGoal += (maxWindow * d + windowCost) / (d+1) 
Case: plane is a simple additive constraint function 
 tCostToGoal[plane] := s.CostToGoal[plane] +  
          <t, s>.Costs[plane] / Constraint[plane] 
 tCombinedCostToGoal += tCostToGoal[plane] 
 maxCost := MAX(maxCost, pathTotalForPlane) 

Fig. 3. To enable the use of windowed cost metrics, make the following changes: 
 



To get around this, we can define a new sort of cost 
value which is a vector rather than a scalar.  Let the cost 
over a path with a windowed cost function be an ordered 
pair of non-negative real numbers (M, C), where M is the 
maximum cost over any window on this path and C is the 
cost over the window ending with the path.  When 
comparing two such pairs, (M1, C1) ≤ (M2, C2) iff 
M1 < M2 or M1 = M2 and C1 ≤ C2 (a lexicographical 
ordering).  This has the desired effect of treating as cheaper 
a path with a lower maximum and, in cases where the 
maximum is identical, treating as cheaper the path that is 
currently traversing a lower-cost zone.  Although this is 
non-monotonic, it is so in a bounded manner; if at any point 
the value along the path is (M, C), it can never drop below 
(M, 0) afterwards.  Furthermore, since the overall algorithm 
is already just an approximation due to its use of a non-
admissible heuristic, use of this sort of cost function does 
not lead to a loss of any of the guarantees we previously 
had. 

However, the algorithm as a whole relies upon 
summing the individual cost functions into a unified cost 
function suitable for classical planners to act upon.  To 
transform these ordered pairs into scalars that preserve the 
same ordering relation, we can simply convert (M, C) to 
M*d+C for some constant d which is larger than the 
maximum possible sum over any window (which can be 
computed in advance by multiplying the maximum cost of 
any transition in the map by the maximum number of 

actions that constitute a window).  Alternatively, if one is 
concerned about the fact this is a non-monotonic function, 
one could just use the maximum cost over any window up to 
this point as the cost metric; while less informed, this is 
monotonic.  The changes contained in the sidebar enable 
windowed constraints using the costs-as-ordered pairs 
approach. 

Finally, to provide a potential speed increase when 
replanning after making small changes to the problem, such 
as after discovering that the map is incorrect, we can apply 
the same principles that transform A* into D*.  D* behaves 
identically to A* when first run, but it caches path cost 
information for all explored states to avoid having to 
recompute unchanged information after small updates to the 
problem [5]. 

For the first half of the algorithm, which employs 
no heuristic, we simply substitute D* for Dijkstra's 
algorithm, with the sum of the normalized constraints as the 
cost function.  To avoid inefficiency, the algorithm should 
compute and store the cost for each function separately, then 
make its decisions based on the sum, as before. 

For the latter half of the algorithm, with its 
complex heuristic, we require a modified form of Focussed 
D*, which is to ordinary D* what A* with a heuristic is to 
Dijkstra's algorithm [6].  Focussed D* orders states that are 
candidates for expansion based on the projected total cost of 
the best path passing through them.  If, as a result of 
advancing along the planned path, the agent discovers that 

Fig. 4.  Example path planning problem.  Each map represents the cost to traverse areas relative to one of six labeled metrics; darker shades are higher 
costs. The path shown was generated by K2 trying to meet all six constraints while minimizing the total chance of being detected (stealth cost). 



the cost information it had was incorrect, it modifies the cost 
map and propagates the changed values outward.  At this 
point, the agent has moved, so the START state has 
changed, altering the expected costs of all paths.  However, 
in most cases (and certainly those where rapid replanning is 
most necessary) the agent has moved a few states at most, 
introducing only small errors, which Focussed D* corrects 
upon expanding the erroneous states.  The end result is an 
efficient replanning algorithm. 

To employ Focussed D*, we need to make the 
same changes we made to A*.  Namely, instead of a single 
queue, the algorithm must maintain two queues, one sorted 
by projected objective function cost and the other sorted by 
projected maximum normalized constraint function cost.  If 
the path through the minimal objective-function-cost state is 
projected to be feasible, then it is expanded; otherwise, the 
minimal state from the other queue is expanded.  Individual 
costs for each metric need to be tracked separately and only 
combined for the purpose of inserting states into the queues. 

Unfortunately, this turns out to be of little practical 
value.  The computations made in the second half of the 
algorithm are dependent on the START state, and when that 
changes, the cached values are invalidated and need to be 
recomputed.  The calculations made in the first half are not 
dependent on the START state, but they are dependent on 
the constraint thresholds due to the normalization employed.  
For nearly any problem of interest, replanning is needed 
because the agent has learned about the world after taking 
actions, in which case its available reserves of the resources 
represented by the constraint thresholds will have changed, 
invalidating all the cached values.  Thus, replannning is only 
valid if the agent doesn't move between planning attempts.  
We are still investigating possible means of being able to 
reuse some of the values. 

EXAMPLE APPLICATIONS 

Figure 4 shows the sort of problem which K2 can 
be used to solve.  Imagine a scenario where a robot needs to 
travel from the southwest corner of a region to the 
northeeast corner in order to investigate some object of 
interest.  The region is filled with light vegetation and 
dominated by an open clearing.  There are also unspecified 
adversaries in the region, so the robot should be stealthy in 
its movements. 

In addition, the robot has a finite quantity of fuel 
and time available in which to complete its traversal task.  
The environment is hot and the sun is shining, and 
overheating poses a risk to the robot as well.  Lastly, the 
robot should try to communicate periodically with an 
operator located to the south of the region, in case new 
orders need to be assigned or new information about the 
environment becomes available. 

The six cost maps in the figure quantify these 
constraints.  Darker parts represent higher costs and lighter 
parts lower costs.  Stealth is harder to maintain in the central 
clearing, but it takes less time to traverse than the 
surrounding vegetation.  Having to move more slowly 
through the vegetation also results in greater fuel 
expenditure to move the same distance.  Heat is worse in the 
clearing and the area immediately east of it, as the sun is 
shining from the western sky.  Vegetation has an effect on 
radio communication, as the robot uses a narrow-beam 
system to avoid broadcasting its position to adversaries, but 
the primary factor affecting radio contact is distance from 
the operator.  Lastly, there is a map that indicates the 
calculated risk associated with passing through an area 
based on known information about the terrain and 
adversarial action. 

We gave this problem to K2, setting hard 
constraints on the total amount of time and fuel available 
and the amount of risk we were willing to tolerate.  The 
amount of heat we were willing to let build up and the 
length of time we were willing to risk being out of radio 
contact were set up as windowed constraints.  Lastly, we 
designated stealth as the sole objective function, because we 
would like to minimize exposure, but have no pre-set limits 
on how much it is safe to be visible.  The resulting path is 
drawn on all six cost maps, to show how it interacts with 
each of them. 

Figure 5 is a much simpler case of navigating 
between block-like obstacles with two competing contraints 
consisting of directly opposed gradients, and demonstrates 
how adjusting the constraints produces different paths 
without any changes to the cost maps. 

 
PERFORMANCE RESULTS 

The algorithm's strength lies in its ability to handle 
multiple cost metrics easily.  When given a map of 250 cells 
by 250 cells of uniform cost with only one cost metric, K2 
required an average of 0.61 seconds over ten runs on a dual-
processor 2.5 GHz G5 with 1 GB RAM to find a path from 
one corner to the opposite.  In contrast, running it on a map 
of equal size with six synthetically-generated fractal cost 
maps took an average of 1.01 seconds.  That was with all 
simple additive constraints; windowed constraints involve 
slightly more work since computing their current value 
requires checking a chain of pointers after each step.  With 
one of the constraints windowed, the average planning time 
was 1.21 seconds, and with two of the six constraints 
windowed, it was 1.38 seconds.  Even when handling 
excessive numbers of constraints, the algorithm scales well; 
with fifty distinct cost metrics, one-third of them windowed, 
K2 still took only 6.93 seconds. 

Gauging the quality of the solutions generated is 
substantially more difficult.  We do not have access to an 

Fig. 5.  The effects of constraints.  This demonstrates K2 with three cost 
metrics (top row); the leftmost is used as the objective function.  
Depending on the relative importance set for the other two constraints, 
different paths are produced (bottom row). 



efficient, complete, and optimal algorithm against which to 
compare the paths produced by K2.  The best we can do is 
to compare with the results of other algorithms in cases 
where both are applicable.  CD* can handle a single additive 
constraint, and MCD* can theoretically handle an arbitrary 
number of simple additive constraints, but its exponential 
runtime and certain implementation issues limit it to just a 
few constraints in practice. 

While K2 is not complete in the sense that it can 
fail to find a feasible path when one it exists, it always 
returns a path which, even if it is not feasible, is as close as 
K2 can get.  Since it does this even when a feasible path 
does not exist, it is not sound, but such a resulting solution 
may still be of value to the user, depending on the 
circumstances. 

In trials (Fig. 6), on singly-constrained problems, 
CD* was faster than K2 and the paths it produced were 
slightly better in terms of total costs, but this is to be 
expected.  CD* makes efficient use of binary search to 
obtain optimal results, and the version we have is a 
production-grade one refined over the years for speed, while 
K2 is still a fresh implementation without much code 
optimization.  On multiply-constrained problems, we had to 
switch to MCD*, which is optimal to whatever resolution it 
explores the space of possible weights for the individual 
cost functions but performs much slower, because it requires 
orders of magnitude more passes to find an answer.  It has 
not had any extensive optimization, either.  The paths it 
produced for multiply-constrained problems were similar, 
though not identical, to those produced by K2.  

 
One Objective & 
One Constraint 

One Objective & 
Two Constraints 

 100x100 250x250  100x100 250x250 
CD* 0.02 0.12 MCD* 2.77 19.75 
K2 0.09 0.68 K2 0.10 0.83 
 
Fig 6.  Average runtimes in seconds of different algorithms on problems 
involving cost maps of two different numbers of cells. 

 

CONCLUSION 

This paper presents K2, a synthesis of existing 
approximation and replanning algorithms for constrained 
planning tasks.  It also describes a novel form of more 
localized constraint over segments of the plan which can be 
used to express useful real-world properties.  Although 
directed towards robotic motion planning, the algorithm 
itself is general-purpose and suitable for any sort of 
planning task, similar to A* and its brethren.   

There is the potential to introduce rapid replanning 
capabilities to the algorithm, but in its current form, altering 
the problem in real-world ways invalidates all work 
previously done computing solutions. 
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