
K2: An Efficient Approximation Algorithm for Globally
and Locally Multiply-Constrained Planning Problems

Andrés Santiago Pérez-Bergquist Anthony Stentz

aspb@mapache.org tony@cmu.edu
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract - Many problems are easily expressed as an
attempt to fulfill some goal while laboring under some set of
constraints. Prior planning algorithms have addressed this in
part, but there are few fast ways of working with more than
just a few constraints. Extending algorithms designed for one
constraint to multiple constraints is difficult due to the NP-
complete nature of the problem, prompting a switch to an
approximation algorithm. This paper presents K2, a multiply-
constrained planning algorithm which is an amalgamation of
parts of H_MCOP and Focussed D*. It accepts additive
constraints over the path or over any fixed-length section of the
path. K2 operates quickly and produces results of acceptable
quality.

Index Terms - Multiply-constrained path selection,

replanning, approximation algorithm

INTRODUCTION

Planning is the act of taking a state space, a set of
actions that define transitions within this state space, and a
pair of states labeled the start and the goal, then finding a
sequence of actions that lead from the start to the goal. For
most problems, one is interested not only in finding a
solution, but also in finding a good solution relative to some
set of criteria. This is traditionally handled by attaching a
cost to each action and then specifying that sequences of
actions with minimal total cost are preferred.

Aside from the issue of finding a minimal-cost
path, assigning costs to actions can be difficult. For many
real-world tasks, preferences regarding solutions are most
naturally expressed in terms of multiple criteria, which often
compete with each other. Even after one has assigned
numerical costs to each of these criteria, it is unclear how to
proceed. Most existing planning algorithms operate on a
single cost per action, so the multiple criteria need to be
combined into a single cost function, such as by assigning
arbitrary weights and summing them.

This sort of approach implies that one criterion can
be traded off for another, which is usually not the case.
Instead, each criterion often models a distinct limited
resource, such as time elapsed and fuel spent, and one is
only interested in plans that simultaneously meet certain
cost constraints for each resource. Thus, if one wishes to
sum the various cost functions, the weights need to be
arrived at intelligently in a problem-dependent fashion.

Path planning is the archetypical example of such a
multiply-constrained problem. One might have a robot that
needs to get from point A to point B without exceeding its
battery charge, overheating, taking too long, or exposing
itself to excessive risks along the way. If each of these
factors can be formulated as a cost map, then they can be
used as inputs for the planning process.

PRIOR WORK

Several algorithms exist to address this category of
problems. A* with bounded costs (ABC) relies upon
prioritizing the constraints [1]. For each point in the state
space, it keeps track of all non-dominated paths that reach it,
and selects from among those. Although optimal and
complete, it can require substantial overhead due to keeping
track of and comparing several paths per point in the state
space. This is unsurprising, since the underlying problem is
NP-complete [2].

CD* is a computationally efficient planner and re-
planner that extends D* (a re-planning version of A*) to
handle one hard constraint which must not be violated in
addition to the primary objective function which needs to be
minimized [3]. CD* assigns weights to the objective
function and the constraint function, then sums them and
uses this combined cost function as the input to D*. Based
on whether or not the constraint is met by the solution
returned, the weights are adjusted up or down and D* is run
again, converging via binary search to the optimal solution
within this weight space.

The obvious approach is to extend CD* to handle
multiple simultaneous constraints. Multiply-Constrained D*
(MCD*) is a planning and re-planning algorithm that takes
into account a single cost function to be minimized and
multiple constraint functions to be kept below individual
thresholds. The constraint functions are assigned weights
and summed with the primary objective function to produce
a combined cost function that is used for the actual planning
via D*. Ideally, the resulting solution could then be
assessed against the constraints and the weights adjusted in
a multi-dimensional search that repeatedly creates new
combined cost functions which converge upon a solution
that meets all the constraints while minimizing the primary
cost function.

Unfortunately, guiding the search in such a manner
is problematic. The focusing of the search is predicated on
the fact that the optimal solution (if it exists) will lie on the
boundary between a region of weight-space whose points
yield solutions that meet all the constraints (the feasible
region) and a region whose points do not. However, for
more than one constraint, the feasible region need not be
contiguous within the weight-space (See Figure 1). This
leaves no efficient means of discovering the boundaries of
the feasible region. MCD* thus reduces to placing an n-
dimensional grid over the weight space, sampling each of
the intersections, and returning the best solution of those
tested. While this is resolution-optimal within the weight-
space, it requires running D* a number of times exponential
in the number of constraints.

Fig. 1. Proof that the feasible region need not be contiguous.
Consider a planning problem with A, B, C, and D as the only

four possible paths, with the total values of the paths relative to three cost
functions being:

 f0 f1 f2
A 0 9 9
B 1 0 12
C 10 1 1
D 1 12 0

 B minimizes f0+f1. D minimizes f0+f2. Any linear combination
of (f0+f1) and (f0+f2) is minimized by one of B or D. If our constraints are
that neither f1 nor f2 may exceed 10, then we have a solid line bisecting the
weight space all of whose optimal solutions do not meet all constraints. A
minimizes f0, which lies on one side of the line, and C minimizes
f0+2f1+2f2, which lies on the other side of the line. Both A and C meet all
constraints. Thus, the feasible space is not contiguous. The cost metrics f0,
f1, and f2 could all be simple additive functions.

Unlike simply minimizing the cost of a path,
finding a path subject to multiple constraints is not a
dynamic programming problem. In dynamic programming,
the optimal solution to a problem is dependent only on the
current position in the state space, allowing for the recursive
construction of solutions. However, in multiply constrained
planning, although the minimum cost path (relative to an
arbitrary metric) from any given point to the goal is not
dependent on the path taken to reach that point, the
admissibility relative to a given set of constraints of a
complete path from the start to the goal passing through that
point can be dependent on the path taken to reach that point.
(This is why ABC must keep track of all non-dominated
partial paths.) Expressed mathematically, if we have n cost
criteria each with a corresponding function fi which gives
the cost of a path p with respect to one of the criteria, and
for each criterion we have a constraint ci, such that we do
not wish fi(p) to exceed ci, then attempting to find a path
which minimizes the cost function maxi(fi(p)/ci) will yield a
path which meets all constraints (if such a path exists). This
is not a dynamic programming function, however.

Given the computational complexity of the
problem, several approximation algorithms exist. H_MCOP
is a two-pass approximation algorithm whose computational
workload grows only linearly as the number of constraint
functions increases [4]. In the first pass, it works backwards
from the goal, finding the optimal path according to a cost
function which is the average of the individual fi(p)/ci
values. It then uses the costs to reach the goal according to
this function as a heuristic to guide a forward search from
the start using the actual maxi(fi(p)/ci) cost function. Since
this heuristic is not guaranteed to be admissible, the
resulting algorithm is neither complete nor optimal, but, in
practice, it performs well and yields solutions of acceptable
quality.

THE K2 ALGORITHM

Our algorithm, K2, is derived from H_MCOP, and
its basic operation is nearly identical. The problem space is
defined in terms of a state space V and a set of transitions E
from one state to another. Associated with each transition in
E is an n-dimensional vector of non-negative real numbers
which give the costs of taking that transition relative to n
different metrics. For any path p composed of a sequence of
transitions in E, fi(p) gives the sum of the costs of each
transition in p with respect to the ith cost metric. The vector

w is composed of n real numbers such that f(p) = ∑i(fi(p)•wi)
defines an objective cost function that should be minimized.

For a specific instance of a problem, we have two
elements of V given as the START and the GOAL. In
addition, we are given a vector c of n real numbers such that
element ci states the maximum cost acceptable with respect
to the ith metric over the total path. The desired output is a
path p from START to GOAL such that ∀i(fi(p) ≤ ci) and
which minimizes f(p) over all such paths.

For much of the algorithm, the cost functions are
normalized to fi(p)/ci so that a normalized path cost of 1.0 or
less corresponds to meeting the constraint. This allows us to
compare in a meaningful fashion how well the various
constraints are being met.

Conceptually, the algorithm works backwards from
GOAL using the sum of the normalized cost functions as an
objective function for A*. For each point in V, it uses the
path determined by this process to calculate the cost to the
GOAL along that path using the maximum of the
normalized cost functions as an objective function. It then
uses these costs as a heuristic for a forward search from
START with additional logic to select between favoring
minimizing the maximum of the normalized cost functions
and minimizing the overall objective function f.

In H_MCOP, the first pass exhaustively computes
the heuristic values for every point in the state space, and
the second pass computes the path from the START to the
GOAL. In K2, we have switched to a time-saving lazy
implementation that computes the heuristic on demand only
for points that are examined by the second pass. Once the
heuristic for a point has been computed, even in the process
of computing the heuristic for another point, it is saved and
never recomputed.

The first half of the algorithm, the backwards pass
(initialized by lines 1-7 and processed by lines 52-66), is
simply Dijkstra's algorithm with ∑fi(p) as the cost function.
It works outwards, finding for every vertex a path to the
GOAL that minimizes the total normalized cost across all
cost functions fi and recording the total cost in each function
fi separately for each node, for use in the second half of the
algorithm. If the constraints are all being met to a similar
degree, as evidenced by the normalized costs with respect to
each of the constraint functions being similar, then the paths
generated will likely be feasible (meet all constraints), if
such paths exist. If, instead, a path requires substantial
increases in several cost functions in order to accommodate
an otherwise troublesome constraint, then the paths
generated at this point will likely not resemble the end result
of stage two of the algorithm.

For the second, forward pass (lines 8-51), the
algorithm runs modified A* with unusual selection logic.
Vertices on the OPEN list are all kept in two queues
simultaneously, one sorted by the total f(p) objective cost of
the traversed path plus the heuristic path from the first half
of the algorithm, and the other sorted by the maxi(fi(p)/ci)
cost of the path, thus preferring paths that are deemed to be
furthest from violating the constraint with respect to which
they are doing worse. (In H_MCOP, this second list is
sorted by the sum of powers of the normalized constraint
functions; if the exponent is infinite, this is equivalent to
taking the maximum of the functions, which usually yields
the best result.)

Initialize the Backward Search by placing the GOAL on the heuristic OPEN list

1 for each u in V
2 u.BackwardState := NEW

3 GOAL.BackwardState := OPEN
4 for p := 1 to n
5 GOAL.CostToGoal[p] := 0
6 GOAL.CombinedCostToGoal := 0

7 Enqueue(BackwardsQueue point:GOAL withCombinedCostToGoal:0 withCostToGoal:GOAL.CostToGoal
 withSuccessor:NULL)

Initialize the Forward Search by placing the START on the new, doubly-sorted OPEN list

8 for each u in V
9 u.ForwardState := NEW

10 for p := 1 to n
11* START.CostToReach[p] := 0
12 ComputeHeuristicForState(START)
13 objCost := 0
14 maxCost := 0
15 for p := 1 to n
16* objCost += w[p] * START.CostToGoal[p]
17* maxCost := MAX(maxCost, START.CostToGoal[p])
18 Enqueue(ObjectiveCostQueue point:START withEstimatedTotalCost:objCost
 withCostToReach:START.CostToReach withPredecessor:NULL)
19 Enqueue(MaxCostQueue point:START withEstimatedTotalCost:maxCost
 withCostToReach:START.CostToReach withPredecessor:NULL)
20 START.ForwardState := OPEN

Do the Forward Search by repeatedly expanding the minimum objective cost path if it is predicted
to be feasible, and the minimum maximum normalized constraint cost path otherwise

21 while QueueIsNotEmpty(ObjectiveCostQueue) & QueueIsNotEmpty(MaxCostQueue) & GOAL.ForwardState != CLOSED
22 if PeekMinFromQueue(ObjectiveCostQueue).ForwardState == CLOSED
23 PopMinFromQueue(ObjectiveCostQueue)
24 else if PeekMinFromQueue(MaxCostQueue).ForwardState == CLOSED
25 PopMinFromQueue(MaxCostQueue)
26 else
27 (u, _, uCostToReach, uPredecessor) := PeekMinFromQueue(ObjectiveCostQueue)
28 minObjFeasible := true
29 for p := 1 to n
30* if uCostToReach[p] + u.CostToGoal[p] > 1.0
31* minObjFeasible := false
32 if minObjFeasible
33 (u, _, uCostToReach, uPredecessor) := PopMinFromQueue(ObjectiveCostQueue)
34 else
35 (u, _, uCostToReach, uPredecessor) := PopMinFromQueue(MaxCostQueue)
36 u.ForwardState := CLOSED
37 u.BackPointer := uPredecessor
38 u.CostToReach := uCostToReach
39 for each v in V such that <u, v> is in E
40 if v.ForwardState != CLOSED
41 ComputeHeuristicForState(v)
42 objCost := 0
43 maxCost := 0
44 for p := 1 to n
45* vCostToReach[p] := u.CostToReach[p] + <u, v>.Cost[p] / Constraint[p]
46* pathTotalForPlane := vCostToReach[p] + v.CostToGoal[p]
47* objCost += w[p] * pathTotalForPlane
48* maxCost := MAX(maxCost, pathTotalForPlane)
49 Enqueue(ObjectiveCostQueue point:v withEstimatedTotalCost:objCost
 withCostToReach:vCostToReach withPredecessor:u)
50 Enqueue(MaxCostQueue point:v withEstimatedTotalCost:maxCost
 withCostToReach:vCostToReach withPredecessor:u)
51 v.ForwardState := OPEN

subroutine: ComputeHeuristicForState(r)

Do the Backward Search using Dijkstra's algorithm on the sum of the normalized cost functions

52 while r.BackwardState != CLOSED
53 (s, sCombinedCostToGoal, sCostToGoal, sSuccessor) := PopMinFromQueue(BackwardsQueue)

54 if s.BackwardState != CLOSED
55 s.BackwardState := CLOSED
56 s.ForwardPointer := sSuccessor
57 s.CombinedCostToGoal := sCombinedCostToGoal
58 s.CostToGoal := sCostToGoal

59 for each t in V such that <t, s> is in E
60 if t.BackwardState != CLOSED
61 tCombinedCostToGoal := 0
62 for plane := 1 to n
63* tCostToGoal[plane] := s.CostToGoal[plane] + <t, s>.Costs[plane] / Constraint[plane]
64* tCombinedCostToGoal += tCostToGoal[plane]
65 Enqueue(BackwardsQueue point:t withCombinedCostToGoal:tCombinedCostToGoal
 withCostToGoal:tCostToGoal withSuccessor:s)
66 t.BackwardState := OPEN

Fig. 2. The workings of the K2 algorithm for simple additive cost metrics. (Starred lines indicate where changes are needed to support windowed constraints.)

If the vertex at the head of the objective cost queue
appears to lie on a feasible path (lines 39-43), then it is
expanded (line 45); if not, then the vertex at the head of the
max cost queue is expanded (line 47). Intuitively, if we seem
to be meeting the requirements, we can focus on keeping
down the objective cost, while if we are in danger of violating
the requirements, we should focus on the one closest to the
limit or most over it. This selection process is not an
admissible heuristic, and it is here that non-optimality and
incompleteness enter the algorithm. The rationale for this
algorithm is explained in detail by Korkmaz and Krunz [4].

We then extended this algorithm by adding a new,
more complicated form of cost function. The original
functions are additive costs over the entire path. For many
applications, some of the constraints are best formulated as a
restriction that should apply to any given segment of the
path. For example, to avoid overheating, one might need to
limit one's exposure to direct sunlight over any given period
of time, or an agent may need to communicate with another
party periodically, limiting how long it should be out of
radio contact with a base. These sorts of constraints can be
expressed as an additive cost function whose value over any

given window should not
exceed some constant. The
obvious way to express this
window is over a number of
state transitions, but for most
such constraints, they are
more naturally expressed in
terms of elapsed time. If
one of the costs associated
with each action is the time
it requires to accomplish,
then the windowed
constraints can be expressed
in terms of that time
expenditure.

The primary problem
with such windowed constraint
functions is the question of
how to guide the search. For
simple additive functions,
the total cost to reach a
given point increases
monotonically as one moves
down the path. However,
the total cost over the
window ending at any given
point along the path can vary
up or down. To turn this into
a monotonically increasing
function, we can treat the
maximum sum over any
window up to this point as
the cost upon which to base
the search. While this works,
it is not particularly well-
informed. Specifically,
unless the next possible step
along a path would result in
the sum over the current
window exceeding the
previous maximum, there is
no feedback regarding
embarking upon a high-cost
section of a path.
Furthermore, after the
highest-cost window the
path will ever encounter has
been traversed, this function
will provide no additional
feedback for the rest of the
path.

Replace Line 11 with:
Case: p is a windowed constraint function
 START.CostToReach[p] := (0, 0)
Case: p is a simple additive constraint function
 START.CostToReach[p] := 0

Replace Lines 16-17 with:
Case: p is a windowed constraint function
 (m, c) := START.CostToGoal[p]
 objCost += w[p] * m
 maxCost := MAX(maxCost, m)
Case: p is a simple additive constraint function
 objCost += w[p] * START.CostToGoal[p]
 maxCost := MAX(maxCost, START.CostToGoal[p])

Replace Lines 30-31 with:
Case: p is a windowed constraint function
 (uBackwardsMax, _) = uCostToReach[p]
 (uForwardsMax, _) = u.CostToGoal[p]
 if uBackwardsMax > 1.0 | uForwardsMax > 1.0
 minObjFeasible := false
Case: p is a simple additive constraint function
 if uCostToReach[p] + u.CostToGoal[p] > 1.0
 minObjFeasible := false

Replace Lines 45-48 with:
Case: p is a windowed constraint function
 window := <u, v>.Costs[windowLengthDefinedInTermsOf[plane]]
 windowCost := <u, v>.Costs[p] / Constraint[p]
 x := u
 while window < windowSize[p] & x != START
 windowCost += <x.BackPointer, x>.Cost[p] / Constraint[p]
 window += <x.BackPointer, x>.Cost[windowLengthDefinedInTermsOf[p]]
 x := x.BackPointer
 (maxWindow, uWindowCost) := u.CostToReach[p]
 maxWindow := MAX(maxWindow, windowCost)
 vCostToReach[p] := (maxWindow, windowCost)
 (vForwardEstimateMax, _) := v.CostToGoal[p]
 maxWindow := MAX(maxWindow, vForwardEstimateMax)
 vCombinedCost = (maxWindow * d + windowCost) / (d+1)
 objCost += w[p] * vCombinedCost
 maxCost := MAX(maxCost, vCombinedCost)
Case: p is a simple additive constraint function
 vCostToReach[p] := u.CostToReach[p] + <u, v>.Cost[p] / Constraint[p]
 pathTotalForPlane := vCostToReach[p] + v.CostToGoal[p]
 objCost += w[p] * pathTotalForPlane
 maxCost := MAX(maxCost, pathTotalForPlane)

Replace Lines 63-64 with:
Case: plane is a windowed constraint function
 window := <t, s>.Costs[windowLengthDefinedInTermsOf[plane]]
 windowCost := <t, s>.Costs[plane] / Constraint[plane]
 x := s
 while window < windowSize[plane] & x != GOAL
 windowCost += <x, x.ForwardPointer>.Cost[plane] / Constraint[plane]
 window += <x, x.ForwardPointer>.Cost[windowLengthDefinedInTermsOf[plane]]
 x := x.ForwardPointer
 (maxWindow, sWindowCost) := s.CostToGoal[plane]
 maxWindow := MAX(maxWindow, windowCost)
 tCostToGoal[plane] := (maxWindow, windowCost)
 tCombinedCostToGoal += (maxWindow * d + windowCost) / (d+1)
Case: plane is a simple additive constraint function
 tCostToGoal[plane] := s.CostToGoal[plane] +
 <t, s>.Costs[plane] / Constraint[plane]
 tCombinedCostToGoal += tCostToGoal[plane]
 maxCost := MAX(maxCost, pathTotalForPlane)

Fig. 3. To enable the use of windowed cost metrics, make the following changes:

To get around this, we can define a new sort of cost
value which is a vector rather than a scalar. Let the cost
over a path with a windowed cost function be an ordered
pair of non-negative real numbers (M, C), where M is the
maximum cost over any window on this path and C is the
cost over the window ending with the path. When
comparing two such pairs, (M1, C1) ≤ (M2, C2) iff
M1 < M2 or M1 = M2 and C1 ≤ C2 (a lexicographical
ordering). This has the desired effect of treating as cheaper
a path with a lower maximum and, in cases where the
maximum is identical, treating as cheaper the path that is
currently traversing a lower-cost zone. Although this is
non-monotonic, it is so in a bounded manner; if at any point
the value along the path is (M, C), it can never drop below
(M, 0) afterwards. Furthermore, since the overall algorithm
is already just an approximation due to its use of a non-
admissible heuristic, use of this sort of cost function does
not lead to a loss of any of the guarantees we previously
had.

However, the algorithm as a whole relies upon
summing the individual cost functions into a unified cost
function suitable for classical planners to act upon. To
transform these ordered pairs into scalars that preserve the
same ordering relation, we can simply convert (M, C) to
M*d+C for some constant d which is larger than the
maximum possible sum over any window (which can be
computed in advance by multiplying the maximum cost of
any transition in the map by the maximum number of

actions that constitute a window). Alternatively, if one is
concerned about the fact this is a non-monotonic function,
one could just use the maximum cost over any window up to
this point as the cost metric; while less informed, this is
monotonic. The changes contained in the sidebar enable
windowed constraints using the costs-as-ordered pairs
approach.

Finally, to provide a potential speed increase when
replanning after making small changes to the problem, such
as after discovering that the map is incorrect, we can apply
the same principles that transform A* into D*. D* behaves
identically to A* when first run, but it caches path cost
information for all explored states to avoid having to
recompute unchanged information after small updates to the
problem [5].

For the first half of the algorithm, which employs
no heuristic, we simply substitute D* for Dijkstra's
algorithm, with the sum of the normalized constraints as the
cost function. To avoid inefficiency, the algorithm should
compute and store the cost for each function separately, then
make its decisions based on the sum, as before.

For the latter half of the algorithm, with its
complex heuristic, we require a modified form of Focussed
D*, which is to ordinary D* what A* with a heuristic is to
Dijkstra's algorithm [6]. Focussed D* orders states that are
candidates for expansion based on the projected total cost of
the best path passing through them. If, as a result of
advancing along the planned path, the agent discovers that

Fig. 4. Example path planning problem. Each map represents the cost to traverse areas relative to one of six labeled metrics; darker shades are higher
costs. The path shown was generated by K2 trying to meet all six constraints while minimizing the total chance of being detected (stealth cost).

the cost information it had was incorrect, it modifies the cost
map and propagates the changed values outward. At this
point, the agent has moved, so the START state has
changed, altering the expected costs of all paths. However,
in most cases (and certainly those where rapid replanning is
most necessary) the agent has moved a few states at most,
introducing only small errors, which Focussed D* corrects
upon expanding the erroneous states. The end result is an
efficient replanning algorithm.

To employ Focussed D*, we need to make the
same changes we made to A*. Namely, instead of a single
queue, the algorithm must maintain two queues, one sorted
by projected objective function cost and the other sorted by
projected maximum normalized constraint function cost. If
the path through the minimal objective-function-cost state is
projected to be feasible, then it is expanded; otherwise, the
minimal state from the other queue is expanded. Individual
costs for each metric need to be tracked separately and only
combined for the purpose of inserting states into the queues.

Unfortunately, this turns out to be of little practical
value. The computations made in the second half of the
algorithm are dependent on the START state, and when that
changes, the cached values are invalidated and need to be
recomputed. The calculations made in the first half are not
dependent on the START state, but they are dependent on
the constraint thresholds due to the normalization employed.
For nearly any problem of interest, replanning is needed
because the agent has learned about the world after taking
actions, in which case its available reserves of the resources
represented by the constraint thresholds will have changed,
invalidating all the cached values. Thus, replannning is only
valid if the agent doesn't move between planning attempts.
We are still investigating possible means of being able to
reuse some of the values.

EXAMPLE APPLICATIONS

Figure 4 shows the sort of problem which K2 can
be used to solve. Imagine a scenario where a robot needs to
travel from the southwest corner of a region to the
northeeast corner in order to investigate some object of
interest. The region is filled with light vegetation and
dominated by an open clearing. There are also unspecified
adversaries in the region, so the robot should be stealthy in
its movements.

In addition, the robot has a finite quantity of fuel
and time available in which to complete its traversal task.
The environment is hot and the sun is shining, and
overheating poses a risk to the robot as well. Lastly, the
robot should try to communicate periodically with an
operator located to the south of the region, in case new
orders need to be assigned or new information about the
environment becomes available.

The six cost maps in the figure quantify these
constraints. Darker parts represent higher costs and lighter
parts lower costs. Stealth is harder to maintain in the central
clearing, but it takes less time to traverse than the
surrounding vegetation. Having to move more slowly
through the vegetation also results in greater fuel
expenditure to move the same distance. Heat is worse in the
clearing and the area immediately east of it, as the sun is
shining from the western sky. Vegetation has an effect on
radio communication, as the robot uses a narrow-beam
system to avoid broadcasting its position to adversaries, but
the primary factor affecting radio contact is distance from
the operator. Lastly, there is a map that indicates the
calculated risk associated with passing through an area
based on known information about the terrain and
adversarial action.

We gave this problem to K2, setting hard
constraints on the total amount of time and fuel available
and the amount of risk we were willing to tolerate. The
amount of heat we were willing to let build up and the
length of time we were willing to risk being out of radio
contact were set up as windowed constraints. Lastly, we
designated stealth as the sole objective function, because we
would like to minimize exposure, but have no pre-set limits
on how much it is safe to be visible. The resulting path is
drawn on all six cost maps, to show how it interacts with
each of them.

Figure 5 is a much simpler case of navigating
between block-like obstacles with two competing contraints
consisting of directly opposed gradients, and demonstrates
how adjusting the constraints produces different paths
without any changes to the cost maps.

PERFORMANCE RESULTS

The algorithm's strength lies in its ability to handle
multiple cost metrics easily. When given a map of 250 cells
by 250 cells of uniform cost with only one cost metric, K2
required an average of 0.61 seconds over ten runs on a dual-
processor 2.5 GHz G5 with 1 GB RAM to find a path from
one corner to the opposite. In contrast, running it on a map
of equal size with six synthetically-generated fractal cost
maps took an average of 1.01 seconds. That was with all
simple additive constraints; windowed constraints involve
slightly more work since computing their current value
requires checking a chain of pointers after each step. With
one of the constraints windowed, the average planning time
was 1.21 seconds, and with two of the six constraints
windowed, it was 1.38 seconds. Even when handling
excessive numbers of constraints, the algorithm scales well;
with fifty distinct cost metrics, one-third of them windowed,
K2 still took only 6.93 seconds.

Gauging the quality of the solutions generated is
substantially more difficult. We do not have access to an

Fig. 5. The effects of constraints. This demonstrates K2 with three cost
metrics (top row); the leftmost is used as the objective function.
Depending on the relative importance set for the other two constraints,
different paths are produced (bottom row).

efficient, complete, and optimal algorithm against which to
compare the paths produced by K2. The best we can do is
to compare with the results of other algorithms in cases
where both are applicable. CD* can handle a single additive
constraint, and MCD* can theoretically handle an arbitrary
number of simple additive constraints, but its exponential
runtime and certain implementation issues limit it to just a
few constraints in practice.

While K2 is not complete in the sense that it can
fail to find a feasible path when one it exists, it always
returns a path which, even if it is not feasible, is as close as
K2 can get. Since it does this even when a feasible path
does not exist, it is not sound, but such a resulting solution
may still be of value to the user, depending on the
circumstances.

In trials (Fig. 6), on singly-constrained problems,
CD* was faster than K2 and the paths it produced were
slightly better in terms of total costs, but this is to be
expected. CD* makes efficient use of binary search to
obtain optimal results, and the version we have is a
production-grade one refined over the years for speed, while
K2 is still a fresh implementation without much code
optimization. On multiply-constrained problems, we had to
switch to MCD*, which is optimal to whatever resolution it
explores the space of possible weights for the individual
cost functions but performs much slower, because it requires
orders of magnitude more passes to find an answer. It has
not had any extensive optimization, either. The paths it
produced for multiply-constrained problems were similar,
though not identical, to those produced by K2.

One Objective &
One Constraint

One Objective &
Two Constraints

 100x100 250x250 100x100 250x250
CD* 0.02 0.12 MCD* 2.77 19.75
K2 0.09 0.68 K2 0.10 0.83

Fig 6. Average runtimes in seconds of different algorithms on problems
involving cost maps of two different numbers of cells.

CONCLUSION

This paper presents K2, a synthesis of existing
approximation and replanning algorithms for constrained
planning tasks. It also describes a novel form of more
localized constraint over segments of the plan which can be
used to express useful real-world properties. Although
directed towards robotic motion planning, the algorithm
itself is general-purpose and suitable for any sort of
planning task, similar to A* and its brethren.

There is the potential to introduce rapid replanning
capabilities to the algorithm, but in its current form, altering
the problem in real-world ways invalidates all work
previously done computing solutions.

ACKNOWLEDGMENTS

This work was sponsored in part by the U.S. Army
Research Laboratory, under contract “Robotics
Collaborative Technology Alliance” (contract number
DAAD19-012-0012) and by the National Science
Foundation via a Graduate Research Fellowship. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies or endorsements of the U.S. Government.

REFERENCES

[1] B. Logan & N. Alechina, "A* with Bounded Costs," Proceedings of the
15th national/10th conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence, p. 444-449, July 1998.

[2] F. Kuipers, T. Korkmaz, M. Krunz, & P. Van Mieghem, "Performance
Evaluation of Constraint-Based Path Selection Algorithms," IEEE
Networks, to appear 2004.

[3] A. Stentz, "CD*: A Real-time Resolution-Optimal Re-planner for
Globally Constrained Problems," 18th national conference on Artificial
Intelligence, 2002.

[4] T. Korkmaz & M. Krunz, "Multi-Constrained Optimal Path Selection,"
Proceedings of the IEEE INFOCOM 2001 Conference, p. 834-843,
2001.

[5] A. Stentz, "Optimal and Efficient Path Planning for Partially-Known
Environments," Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 4, p. 3310-3317, May 1994.

[6] A. Stentz, "The Focussed D* Algorithm for Real-Time Replanning,"
Proceedings 1995 International Joint Conference on Artificial
Intelligence, p. 1652-1659, August 1995.

